
Guo et al., Sci. Adv. 10, eadi0329 (2024)     12 January 2024

S c i e n c e  A d v A n c e S  |  R e S e A R c h  A R t i c l e

1 of 11

C O M P U T E R  S C I E N C E

Unveiling intra- person fingerprint similarity via deep
contrastive learning
Gabe Guo1*, Aniv Ray1, Miles Izydorczak2, Judah Goldfeder1, Hod Lipson3, Wenyao Xu4

Fingerprint biometrics are integral to digital authentication and forensic science. However, they are based on the
unproven assumption that no two fingerprints, even from different fingers of the same person, are alike. This ren-
ders them useless in scenarios where the presented fingerprints are from different fingers than those on record.
Contrary to this prevailing assumption, we show above 99.99% confidence that fingerprints from different fingers
of the same person share very strong similarities. Using deep twin neural networks to extract fingerprint represen-
tation vectors, we find that these similarities hold across all pairs of fingers within the same person, even when
controlling for spurious factors like sensor modality. We also find evidence that ridge orientation, especially near
the fingerprint center, explains a substantial part of this similarity, whereas minutiae used in traditional methods
are almost nonpredictive. Our experiments suggest that, in some situations, this relationship can increase forensic
investigation efficiency by almost two orders of magnitude.

INTRODUCTION
Fingerprints have stood the test of time as the gold standard biometric
modality, having achieved ubiquity in digital authentication and forensic
science. For instance, there are billions of mobile devices worldwide that
rely on fingerprint identification technology (1–4). As it relates to foren-
sics, the FBI has more than 150 million fingerprints on record (5, 6),
while crime laboratories analyze hundreds of thousands of fingerprints
per year (7). Recently, there has been great research activity on finger-
prints, spanning the development of artificial intelligence (AI)–based
recognition techniques (8, 9), the creation of hardware and chemical
sensing modalities (10–14), reliability analysis in criminal justice sce-
narios (15–17), and genetic origins (18).

However, fingerprint biometrics are based on the traditional assump-
tion that no two fingerprints, even from the same person, are alike (9, 19,
20). (Although technically, this assumption has never been definitively
proven, multiple models estimate the probability of a given fingerprint
configuration randomly occurring to be orders of magnitude less than
the probability of randomly selecting a given person—say, the president
of the United States—from the population of all human beings alive
(20).) Thus, they only work for matching two samples of the same exact
finger (8, 21, 22). This renders them useless in crime scenes or authenti-
cation scenarios where the presented fingerprints are from different fin-
gers than the fingerprints on record.

For instance, imagine that detectives have obtained two fingerprints
(e.g., right index and right middle) from crime scene A. From crime
scene B, they obtained two other fingerprints (e.g., left pinky and left
thumb). They have a list of 1000 potential suspects from scene A. A dif-
ferent list of 1000 potential suspects is available for scene B. Given the
current information, traditional fingerprint biometrics are unable to dis-
cern whether the fingerprints from scenes A and B are related and involve
the same person unless all fingerprints of all suspects are readily available
on file. However, if intra- person fingerprint similarity can be established,
as proposed in this paper, then the suspect lists from both scenes

could be substantially reduced. Using the findings reported in this pa-
per, the list of 1000 suspects could potentially be prioritized to about 40
higher- likelihood candidates.

Our central claim is that we can sidestep the same- finger limitation
by exploiting nontraditional fingerprint features. Past studies provided
evidence that fingerprint patterns may be partially genetically deter-
mined (18, 23–26), which implies that there could be similarities among
fingerprints from the same person. Furthermore, recent research shows
that partial fingerprints from different users have common features that
can be exploited to fool authentication systems (27). Last, liveness detec-
tion (i.e., whether a physical fingerprint is real or a spoof copy made
from synthetic materials like rubber or silicone) systems perform better
when trained on samples from the user whose fingerprints they test on,
even when those training fingers are different than the testing fingers
(28, 29).

In this work, our main discovery is that fingerprints from different
fingers of the same person share strong similarities; these results hold
across all combinations of fingers, even from different hands of the same
person. These similarities can mostly be explained by fingerprint ridge
orientation.

We found this relationship by training twin deep neural networks
(Fig. 1A) to predict whether two fingerprint samples (not necessarily
from the same finger) were from the same person (30–32).

The neural network’s outputted representation vectors for same-
person pairs showed statistically significant differences from its repre-
sentations for different- person pairs (P < 10−4, with paired one- sided t
test), providing very strong evidence of the intra- person fingerprint
similarity. We systematically ruled out spurious sources of similarity by
controlling for sensor modality, sample source, image background, and
image brightness, leaving us confident that the similarities are due to in-
trinsic fingerprint patterns. To further promote confidence in our re-
sults, we extensively interrogated the extracted features from our deep
neural networks (33, 34) and found that they were fingerprint- like
features—in particular, the ridge orientation near the center of the fin-
gerprint heavily contributes to the similarity.

We also validated the usefulness of our results by using them to
improve the efficiency of a simulated criminal justice lead- generation
process by more than an order of magnitude. Last, we investigated
the biases and generalization ability of our model, as it relates to de-
mographics.
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RESULTS
Unveiling the similarity
General similarity analysis
We assess the degree to which pairs of fingerprints from different 
fingers of the same person are similar, with the expectation that they 
should be much more similar than pairs of fingerprints from dif-
ferent people, no matter which fingers they come from.

To do this, we conduct a one- sided paired t test (35, 36) with 
α = 10−4 on (i) the average representation vector (obtained from 

twin neural network) distance between two fingerprints from the 
same person and (ii) the average representation vector distance 
between two fingerprints from different people. Furthermore, using 
ROC AUC (which stands for receiver operating characteristic—area 
under the curve) (37), we quantify the ability of these deeply learned 
fingerprint representations to discriminate between same- person 
fingerprint pairs and different- person fingerprint pairs, based on 
representation vector distance (ROC AUC ranges from 0 → 1, where 
values above 0.5 indicate better discriminative ability).

C

A B

D

Fig. 1. Overview of cross- finger similarity analysis pipeline and results. Panel (A) shows how we use twin neural networks to analyze fingerprints and discover the 
cross- finger similarity. Panel (B) shows that our fingerprint representation vectors reveal a statistically significant difference (as determined by one- sided paired t tests) 
between pairs of distinct fingerprints (e.g., left index versus right pinky) that originate from the same person and from different people. (Please refer to figs. S1 to S3 for 
prediction examples.) Panel (C) shows that the cross- finger similarities (measured by ROc AUc, which stands for receiver operating characteristic—area under the curve, 
where higher is better) hold true across every conceivable pair of fingers, even from different hands. (Results displayed are from Sd300, fig. S4 shows that this result holds 
across datasets, and fig. S5 shows that these finger- by- finger similarities are statistically significant.) Panel (D) (showing means and SeM of a number of leads) validates the 
usefulness of our discovery, as the cross- finger similarity can reduce the work in criminal justice investigations by more than an order of magnitude. (See fig. S8B for an 
alternate representation of this data.) note that we use exhaustive search as our baseline, as there are no existing methods for cross- finger matching.
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We trained and validated our model on NIST SD302 (38), NIST 
SD300 (39), UB RidgeBase (40, 41), and MSU PrintsGAN (42) 
(more details in Materials and Methods). We tested on NIST 
SD301 (23 people) (43) and different subsets (i.e., containing previ-
ously unseen people) of NIST SD302 (20 people) (38) and NIST SD300 
(90 people) (39) than were used in training/validation. We are aware that 
SD301 was created as a precursor trial run to SD302, with both datasets 
being collected in Maryland (38, 43). With that in mind, we contacted 
the National Institute of Standards and Technology (NIST) to find out if 
there was any overlap between the datasets. The project leader at NIST 
said that overlap was highly unlikely. For additional verification, we ran 
NIST’s NBIS software (44) to conduct a 10- fingerprint comparison of 
the person from SD301 to each person from SD302. On the basis of this 
analysis, we found out that there was only one common person between 
the two datasets: Person 00002239 from SD301, a.k.a. Person 00002455 
from SD302. To prevent data leakage, we removed this person from 
SD301. We randomly selected pairs from each dataset, with an exactly 
equal number of pairs from the same person and pairs from different 
people. We ensured that the two fingerprints in each pair were from dif-
ferent fingers (e.g., right index and left pinky) since same- finger match-
ing (e.g., two samples of right index) is already a solved problem (8, 9, 19, 
20). Furthermore, we forced the two fingerprints in each pair to come 
from different sampling events [as defined by device code (38, 43) and 
impression type (39)] to minimize the effect of spurious similarities (e.g., 
user behavior during a data collection session and characteristics of the 
specific sensor).

Results are shown in Fig. 1B. Our fingerprint representation vectors 
exhibit statistically significant differences between fingerprints from the 
same person and fingerprints from different people (as measured by the 
one- sided paired t test), with discriminative power well above the base-
line level (as measured by ROC AUC). We note that while the partici-
pants in the testing subsets of NIST SD302 and SD300 were never seen 
during model training, their fingerprint samples come from a similar 
distribution as the training items from SD302 and SD300, due to them 
being collected by the same experimental protocol (38, 39). On the con-
trary, since NIST SD301 was collected in a different experiment than the 
other two datasets (albeit as a practice run for SD302) (43), its distribu-
tion is different from that of the training set. Thus, it is expected that the 
similarities appear to be stronger in SD302 and SD300 than in SD301. It 
also means that our success in finding similarities in SD301 is very 
strong proof that our fingerprint similarities are robust and universal.
Finger- by- finger similarities
We further investigate the specific finger- by- finger similarities. For this 
experiment, we make sure to train our model with equal numbers of all 
fingers, so that it is not biased toward discerning the similarity for some 
fingers that happen to appear more frequently in the dataset. As in the 
previous experiment, we used ROC AUC, but instead of the paired t test, 
we used Welch’s one- sided two- sample t test (reasons explained in Mate-
rials and Methods) (45).

Figure 1C displays the results (with additional information in figs. S4 
to S6). We see that regardless of which pair of fingers we consider, the 
similarity is still statistically significant, and the discriminative ability 
is well above the baseline. This result holds even across pairs of fingers 
from different hands.

Understanding the similarity
Important features
Now that we have established the existence of a strong similarity among 
a person’s 10 fingerprints, regardless of which fingers we consider, we 

examine the specific features that contribute to this similarity. Specifi-
cally, we analyze the binary patterns, ridge orientation, ridge density, and 
minutiae, which are commonly used in traditional fingerprint analysis 
(8, 9, 20). We analyze the similarity using the same deep learning pipe-
line as in the general similarity analysis—we train, validate, and test on 
the feature extraction maps for SD302 (Fig. 2B); and we use the original 
fingerprint images as a baseline.

Figure 2A shows that all the feature maps exhibit a statistically sig-
nificant ability to distinguish between pairs of distinct fingerprints from 
the same person and different people. However, some are clearly better 
than others. In general, the more fingerprint- like a feature map looks, 
the more strongly it shows the similarity. We highlight that the bina-
rized images performed almost as well as the original images, meaning 
that the similarity is due mostly to inherent ridge patterns, rather than 
spurious characteristics (e.g., image brightness, image background 
noise, and pressure applied by the user when providing the sample). 
Furthermore, it is very interesting that ridge orientation maps perform 
almost as well as the binarized and original images—this suggests that 
most of the cross- finger similarity can actually be explained by ridge 
orientation. The most unexpected result was that the minutiae maps 
barely outperformed random guessing, contrary to the common use of 
minutiae in traditional same- finger- to- same- finger matching (8, 9, 20). 
We believe that this disconnect stems from the fact that minutiae repre-
sent the peculiarities of a single fingerprint. This rareness is what makes 
them so powerful for same- finger matching. However, due to this rare-
ness, we believe that they are unlikely to occur across fingers and there-
fore may not be as useful for cross- finger matching.
Interrogating the neural network
To further illustrate that the similarity originates from genuine finger-
print patterns rather than spurious similarities (e.g., image background 
and image brightness), we interrogate the feature maps extracted by 
our neural networks, with the expectation that these features should 
resemble fingerprint patterns. We visualize the convolutional filters of 
our embedder by optimizing the input image via gradient ascent to 
maximize their activation (33, 34).

The results for the first 16 filters of each selected layer are shown 
in Fig. 3. Filters were chosen from layers 5, 11, and 17. We observe a 
trend in the filter visualizations going from the beginning to the end 
of the network: filters in earlier layers exhibit simpler ridge/minutia 
patterns, the middle layers show more complex multidirectional 
patterns, and filters in the last layer display high- level patterns that 
look much like fingerprints—this increasing complexity is expected 
of deep neural networks that process images. Furthermore, the ridge 
patterns in the filter visualizations are all generally the same shade of 
gray, meaning that we can rule out image brightness as a source of 
similarity. Overall, each of these visualizations resembles recogniz-
able parts of fingerprint patterns (rather than random noise or back-
ground patterns), bolstering our confidence that the similarity 
learned by our deep models is due to genuine fingerprint patterns, 
and not spurious similarities.
Pinpointing the crucial areas
To gain insight into what areas of fingerprints contribute to cross- 
finger similarity, we generate saliency maps that explain our neural 
network decisions. We use GradCAM (46, 47) with a contrastive scor-
ing function (30) to generate the saliency maps.

Figure 4 shows the saliency maps generated from our networks. We 
observe that our twin neural networks focus primarily on singular re-
gions: areas where the ridge orientation rapidly changes, e.g., deltas (20). 
This explains why orientation maps (Fig. 4D)—which preserve singular 

D
ow

nloaded from
 https://w

w
w

.science.org on M
arch 26, 2024



Guo et al., Sci. Adv. 10, eadi0329 (2024)     12 January 2024

S c i e n c e  A d v A n c e S  |  R e S e A R c h  A R t i c l e

4 of 11

regions—were shown in Fig. 2 to substantially outperform ridge density 
(Fig. 4E) and minutiae maps (Fig. 4F). Looking at the high- level features 
in Fig. 3D, we see that the filters in the final convolutional layer do seem 
to be searching for singular regions: This shows that the different inter-
pretability methods we use lead to complementary conclusions. We also 

observe that fingerprint pattern type (e.g., arch, tented arch, left loop, 
right loop, central pocket loop, double loop, whorl, and accidental) (20, 
48, 49) is considered, but alone cannot explain the intra- person finger-
print similarity: We found numerous examples of correctly matched fin-
gerprints of different pattern types (Fig. 4, B and C, and fig. S1A) and the 

BA

Fig. 2. Feature similarity analysis. As shown in (A), the cross- finger similarity can be explained almost exclusively by the binary ridge patterns (rather than spurious 
effects, like background or image brightness). We also find that ridge orientation (without considering thickness) explains a majority of the cross- finger similarity. how-
ever, minutiae are virtually noninformative, belying their widespread prominence in traditional fingerprint matching. (Statistical significance is determined by one- 
sided paired t tests.) Panel (B) shows examples of each of the compared feature maps.

A

B C D

Fig. 3. Visualization of relevant deep- learned features. Our deep twin networks consider features that highly resemble fingerprint patterns, thus allowing us to rule out spurious 
factors for the similarity. Panel (A) shows our network architecture, with dashed boxes surrounding visualized layers. Panel (B) shows 16 out of 64 feature maps considered in the 
low- level layer, panel (C) shows 16 out of 256 feature maps considered in the mid- level layer, and panel (D) shows 16 out of 512 feature maps considered in the high- level layer.
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same pattern type (Fig. 4A and fig. S3D). More examples are available in 
the appendix (figs. S1 to S3).

Lead efficiency analysis
One of the most obvious uses for our fingerprint recognition sys-
tem is to generate leads for law enforcement investigations—thus, 

it is crucial to understand how many false positives our system 
generates before producing a true positive.

We model this with a geometric distribution where the probabil-
ity parameter is the probability of a sample being a true positive, 
given that the test result is positive. We select the match threshold 
with the highest f1 score (50) and find the expected number of trials 

A B

C D

E F G

Fig. 4. Saliency maps for cross- finger fingerprint matching. Panels (A to F) are generated via GradcAM (46, 47) with modified triplet loss (30). the bottom leftmost fingerprint in 
each panel is the reference sample, the top left fingerprint is from the same person, and the top right fingerprint is from a different person. the left saliency map highlights areas that 
contribute to the similarity between the two fingerprints from the same person, while the right saliency map highlights areas that contribute to the similarity between the two 
fingerprints from different people. violet represents unimportant regions, and red represents highly important regions, as shown in (G).
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to find the true positive. As this probability depends on the prior 
(i.e., the proportion of positive examples in the test dataset), we 
modify our test dataset and repeat the experiment with different 
proportions. We ran this experiment three times and reported the 
mean and SEM.

For this experiment, we test N- to-  N fingerprint matching (for 
N = 1,2,3), where we have N fingerprints from person A and N 
fingerprints from person B: This multi- finger scenario is important 
because criminals may leave behind multiple fingerprints at crime 
scenes (51). We impose the following restrictions: Person A’s finger-
prints (e.g., right index and left pinky) are from different fingers 
than person B’s fingerprints (e.g., left middle and left ring), and 
Person A’s fingerprints were all collected at the same sampling event, 
which is a different sampling event than person B’s fingerprints [as 
defined by SD302 sensor code letter (38)]. To get the similarity 
score, we average the representation vector distances for all N × N 
pairs of fingers.

We see from Fig. 1D that our method reduces the number of 
leads required by more than an order of magnitude, as compared 
to the exhaustive search baseline. This highlights the potential of 
this test as an important tool in forensic investigations.

Demographic experiments
We also conduct exploratory experiments on the impact of demo-
graphic characteristics, such as race and gender, on the intra- person 
fingerprint similarity. In particular, we want to understand how the 
intra- person fingerprint similarity generalizes across demographic 
groups, i.e., if the similarities in one demographic group also apply 
to another demographic group.

To do this, we create subsets of SD302 based on the demographic 
group: gender (male versus female) and race (white versus person of 
color). For a fair comparison, we make sure that each demographic 
subset has an equal number of people and a roughly equal number 
of fingerprint images (which means that many of the samples from 
the majority group are not used in this experiment). Specifically, 
each gender group has 54 training IDs (i.e., people), 6 validation 
IDs, and 8 testing IDs; and each racial group has 49 training IDs, 
6 validation IDs, and 7 testing IDs. We understand that the number 
of testing IDs may be lower than we would like to conclude. To com-
bat this, we reshuffle the train- val- test splits five times (similar to 
cross- validation), such that we have five testing sets with no overlap-
ping participants, making for a total of 40 testing IDs for gender and 
35 testing IDs for race.

We train and validate the model from scratch on only one de-
mographic group. Then, we test it on the same demographic group, 
and we also test it separately on the other demographic group (in 
both cases, we continue to compare fingerprints from different fin-
gers, like thumb versus pinky). Our rationale for this protocol is 
that if the performance is better when testing on the same demo-
graphic group the model was trained on than testing on the other 
demographic group, we can infer that at least some of the intra- 
person fingerprint similarity differs between these demographic 
groups. Conversely, if the performance is the same (or even better) 
when testing on the demographic group the model was not trained 
on, then we have evidence to suggest that the intra- person finger-
print similarity does not differ between these demographic groups. 
In addition, we train the model on the combined demographic 
groups and test on individual demographic groups, with the expec-
tation that performance should increase over training on any single 

demographic group, given that the intra- person fingerprint simi-
larity is generalizable.

Figure 5 shows the ROC AUC (sample means and sample SD) 
results. For both the gender (Fig. 5A) and racial (Fig. 5B) splits, we 
clearly see that the model performs the best when it is trained on 
all demographic groups—this indicates that the similarity is gen-
eralizable to a great degree. We also see that in some cases (e.g., 
male train, male test; white train, white test), the model performs 
slightly better when tested on the same demographic group it was 
trained and validated on (e.g., train, validate, and test on whites)— 
as opposed to either training or testing on a different demographic 
group—indicating that there may be a slight group- specific por-
tion to the similarity (e.g., there may be a specific kind of cross- 
finger similarity that males have, but females do not have).

DISCUSSION
We suggest that the intra- person fingerprint similarities are of 
interest not only because they challenge long- held beliefs but also 
because this similarity could help improve the ability to find leads 
for investigations when the fingerprints obtained from crime scenes 
are from different fingers than the fingerprints already on file. We 
hope this additional information could help prioritize leads when 
many possibilities exist, help exonerate innocent suspects, or even 
help create leads for cold cases.

In a similar vein, our discovery can also help narrow down the 
candidate list generated by automated fingerprint identification 
systems (AFIS). Particularly when AFIS draws from large data-
bases, many fingerprints that are not from the culprit may often be 
returned (20). However, with the intra- person fingerprint similar-
ity detected by our work, for every suspect in the list, we can verify 
if their other fingerprints also satisfy the similarity to the queried 
fingerprint—if not, then we can eliminate those suspects, thereby 
reducing the number of close non- matches.

In addition, our work can be useful in digital authentication 
scenarios. Using our fingerprint processing pipeline, a person can 
enroll into their device’s fingerprint scanner with one finger (e.g., 
left index) and unlock it with any other finger (e.g., right pinky). 
This increases convenience, and it is also useful in scenarios where 
the original finger a person enrolled with becomes temporarily or 
permanently unreadable (e.g., occluded by bandages or dirt, ridge 
patterns have been rubbed off due to traumatic event), as they can 
still access their device with their other fingers.

Limitations and future work
The performance of our system is still markedly below that of state- 
of- the- art systems designed for same- finger matching (8, 9, 42), due 
to cross- finger matching being a substantially harder problem. Our 
current system, as is, would therefore not be appropriate for use as 
deciding evidence in court or in authentication situations. Further-
more, even when our system is used only for lead generation, the 
demographic fairness experiments reveal the risk of certain demo-
graphic groups being falsely investigated more often than others—
we urge future users to be aware of these biases.

Moreover, since the goal of our work was to validate whether 
intra- person fingerprint similarities exist at all, we generally used 
high- quality images of full fingerprints. However, in many real- 
world scenarios, only low- quality samples of partial fingerprints 
may be available, e.g., latent fingerprints collected at a crime scene 
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(22). While our model showed some degree of robustness against 
low- quality (fig. S2D) and partial (figs. S1D, S3B, and S4A) images, 
many of the failure cases were on low- quality images (figs. S2F and 
S3E). Furthermore, our analysis was done with a dataset of sufficient 
size (∼60,000 fingerprints across training, validation, and testing; 
∼7000 fingerprints from 133 people in testing alone) to statistically 
validate our central claim, but smaller than we would have liked to 
build a strong real- world system.

We suggest that if the proposed system is trained using very large 
governmental databases, including partial fingerprints, then sub-
stantially more useful performance could likely be obtained. Fur-
thermore, we explored here only a single neural network architecture, 
one which was sufficient to support our claim but not necessarily 

optimal. Now that we have established that intra- person fingerprint 
similarity exists, alternative architectures should be explored, com-
mensurate with the amount of data available.

MATERIALS AND METHODS
Model architecture
What the architecture should do
As previously stated, we want a system that takes as input two im-
ages of fingerprints and outputs whether they are from the same 
person. To do this, we require a model that takes an image of a 
fingerprint as input and outputs a latent embedding (i.e., finger-
print representation) vector. The idea is that we can run this model 
on the two fingerprint images of interest, and then compare the 
distance between their embeddings. If the distance between the 
embeddings is lower than some threshold, then we conclude that 
the two fingerprints are from the same person; otherwise, we pre-
dict that they are from different people. In designing this system, 
we drew inspiration from previous work on face recognition, 
which used a similar structure to identify with high accuracy 
whether two images of a face are from the same person (30).
Specific technical details
To satisfy these criteria, we use a ResNet- 18 model as a feature 
extractor (52). We remove the final output layer, using the penulti-
mate 512- dimensional layer to generate our embedding (i.e., fea-
ture representation) vectors. We then normalize the embedding 
layer to have a magnitude of 1 (this increases the ease and stability 
of training). To compare the outputted embedding vectors, we do 
a threshold calculation on squared L2 distance.

Training process
Transfer learning
We train the model in two passes. First, we pre- train on synthetic 
fingerprint data (MSU PrintsGAN) (42). We pre- train because the 
synthetic fingerprint dataset has substantially more samples than 
the real fingerprint datasets, so this synthetic dataset is a good 
source of data for teaching our model how to extract fingerprint 
features. However, the synthetic dataset only has one finger per 
person, but our target task is to match different fingers from the 
same person. Thus, we fine- tune real fingerprint datasets that con-
tain multiple fingers per person (NIST SD302, NIST SD300, and 
UB RidgeBase) (38–41).
Training loop
In both pre- training and fine- tuning, we use triplet loss with a 
margin of 0.2 (30), Adam optimizer (53) with an initial learning 
rate of 0.001, and batch size 64. Pre- training has a maximum of 25 
epochs, and fine- tuning has a maximum of 250 epochs, subject to 
early stopping (if the validation loss exceeds the running average 
over the last 85 epochs). Over the course of the training cycle, we 
use a cosine decay schedule to decay the learning rate to 10−7 by 
the 250th epoch (54).

To train with triplet loss, each sample passed into the model is 
a tuple: anchor image, positive example, and negative example; 
where the anchor image is a fingerprint from a given person, the 
positive example is another fingerprint from the same person, and 
the negative example is a fingerprint from a different person. We 
note that this means that the model sees an equal number of ex-
amples of fingerprint pairs from the same person and fingerprint 
pairs from different people.

A

B

Fig.  5. Generalizability of similarities across demographic groups. ex-
pressed in ROc AUc (sample means and sample Sd). We reshuffle the demo-
graphic datasets five times, to get five mutually exclusive testing sets per 
demographic group (similar to cross- validation). Sample means and sample Sds 
(i.e., dof = 5 − 1 = 4) shown in the diagram are calculated from these five re-
shuffles. Panel (A) shows how similarity features learned from one gender gen-
eralize to fingerprints from another gender, with 8 × 5 = 40 distinct male test 
participants and 8 × 5 = 40 distinct female test participants. Panel (B) shows 
how similarity features learned from one racial group generalize to fingerprints 
from another racial group, with 7 × 5 = 35 distinct white test participants and 7 
× 5 = 35 distinct non- white test participants.
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Then, we iteratively (via gradient descent) minimize anchor- 
positive distance and maximize anchor- negative distance, using the 
objective function L for triplet loss [i.e., we want min(L)]: L(a, p, n) = 
max {d(a, p) − d(a, n) + α, 0} where a is the embedding vector for 
the anchor image, p is the embedding vector for the positive exam-
ple, n is the embedding vector for the negative example, α is a hyper-
parameter that represents the desired margin between positive and 
negative examples, and d() is Euclidean distance.

We randomly chose the triplets for training, with a few restric-
tions. First, we ensure that within a triplet, all the fingerprints are 
from the same dataset. The reason for this is that images from differ-
ent datasets generally have different backgrounds and textures, so if 
we were to train our model with triplets from different datasets, the 
model would learn to compare the image background and texture, 
although we want to find the similarities in the actual fingerprint 
ridge patterns. Second, we ensured that the anchor and positive 
images were taken from different sampling events. We do this so 
that the model learns to capture the similarities between finger-
prints, regardless of the random noise that may be in a particular 
sample, e.g., the pressure exerted by the user, characteristics of the 
sensor, and image background. We also select the validation dataset 
randomly, but we try to keep the finger pairings (e.g., right index to 
left pinky) in the dataset relatively balanced in regards to the type 
of finger.

Dataset
Pre- training
We pre- train our model to improve its ability to extract fingerprint 
features. For this purpose, we use MSU’s PrintsGAN dataset. It is a 
synthetically generated dataset, consisting of 525,000 fingerprint 
images from 35,000 made- up “identities”; each “identity” has 15 
samples (42). Specifically, the PrintsGAN images were pre- created 
(42) using generative adversarial networks (55) trained on the 
Michigan State Police longitudinal database (15). We use a 95- 3- 2 
train- val- test split, making sure that there is no overlap among the 
people in each set.

We pre- train on PrintsGAN rather than ImageNet (56) because 
the samples in PrintsGAN much more closely resemble the sam-
ples from our target task. However, PrintsGAN has two limita-
tions: (i) the fingerprints are not from real people, so they do not 
reflect the variety present in real life (in particular, the images have 
very little background noise) and thereby may introduce bias into 
the model and (ii) it does not have all 10 different fingerprints 
from the same person, it only has multiple samples of one finger-
print from the same “person.” These limitations are why we must 
fine- tune other datasets (38). We emphasize that we do not test on 
PrintsGAN.
Fine- tuning
We fine- tune using 53,315 fingerprint samples from 927 people (and 
use 5819 fingerprint samples from 114 different people for valida-
tion), from the SD302 (38), SD300 (39), and UB RidgeBase (40, 41) 
datasets. All of these datasets contain samples from multiple fingers 
(e.g., left index, right pinky) per person. We do not use the low- quality 
“latent” fingerprint (e.g., collected from arbitrary surfaces) samples 
from these databases, since our goal is to discern the cross- finger sim-
ilarities, and it is harder to extract features from such samples.
Testing
Just as in training, we generate triplets for testing: anchor, positive, 
and negative. We do this so that we can get an exactly equal number 

of same- person and different- person pairs, where the same- person 
pair is obtained by taking the anchor and positive fingerprints, and 
the different- person pair is obtained by taking the anchor and 
negative fingerprints.

We test on a holdout portion of SD302 that contains 20 dif-
ferent people than those seen in training and validation; this 
has 2746 distinct fingerprints. We also test on a holdout portion 
of SD300 that contains 90 different people than those seen in 
training and validation; this has 1787 distinct fingerprints. 
While it is valid to test on these holdout portions of SD302 and 
SD300, these holdouts are still drawn from similar distributions 
as the portions of SD302 and SD300 that were used in training 
since they were collected using the same respective experimen-
tal protocols.

Therefore, to test the robustness of our fingerprint represen-
tations, we also use SD301 (43), a dataset that was collected in a 
different experiment than SD302 and SD300, and was not used 
at all during training. Since SD301 was created as a trial run for 
SD302 (38, 43), we took care to verify that there were no over-
lapping participants in the data we used—after contacting NIST 
and running NBIS (44) on the datasets, we found a singular 
overlapping participant, which we removed from SD301. Thus, 
our clean version of SD301 has 23 distinct people with 3170 
fingerprint samples.
Data augmentations
For all images, we add padding to make them square- shaped, 
resize to 224 × 224, and convert to grayscale. For the training set 
only, we randomly apply the following transformations: hori-
zontal flip (over the y axis), rotation, translation, shearing, crop-
ping, aspect ratio resizing, Gaussian blurring, noise addition, 
and brightness scaling.

Metrics
t Test statistical analysis
We conduct one- sided t tests (35, 36) with α = 10−4 on (i) the 
average representation vector (obtained from the twin neural 
network) distance between two fingerprints from the same per-
son and (ii) the average representation vector distance between 
two fingerprints from different people. Our alternative hypoth-
esis Ha is that the average representation distance between two 
fingerprints from the same person is less than that between two 
fingerprints from different people. For the general similarity and fea-
ture similarity experiments, n1 = n2 =

#pairs

2
 can be obtained from 

the bar charts shown in the main text. For the finger- by- finger 
similarity, n1 and n2 can be obtained from the matrices shown in 
the appendix. Calculations are done in SciPy (57).

For most of our analyses, we conducted paired t tests (Figs. 1B 
and 2) (35, 36). This is because the testing pairs are generated as 
triplets (rA, fA, fB), where rA is the reference fingerprint from 
person A, fA is another fingerprint from person A, and fB is a 
fingerprint from person B. Thus, we have natural correspon-
dences between samples in the same- person set and samples in 
the different- person set, i.e., (rA, fA) is the analog of (rA, fB).

However, for the finger- by- finger similarity analysis (Fig. 1C and 
figs. S4 to S6), we have to conduct Welch’s two- sample t test (45). 
This is because we partition the pairs of fingerprints by which spe-
cific fingers they came from, e.g., compare only the pairs that con-
tain a right index and left pinky. Since fA and fB in the aforementioned 
triplets may not come from the same fingers (e.g., fA is from a left 

D
ow

nloaded from
 https://w

w
w

.science.org on M
arch 26, 2024



Guo et al., Sci. Adv. 10, eadi0329 (2024)     12 January 2024

S c i e n c e  A d v A n c e S  |  R e S e A R c h  A R t i c l e

9 of 11

pinky and fB is from a right thumb), each same- person sample no 
longer has a natural partner in the different- person set.
ROC AUC
ROC AUC (receiver operating characteristic—area under the curve) 
measures the discriminative ability of our representation vectors 
between (i) pairs of fingerprints from the same person and (ii) 
pairs of fingerprints from different people. As for interpretation, 
ROC AUC ranges between 0 and 1: Higher values mean that we can 
correctly identify more same- person fingerprint pairs without misla-
beling different- person fingerprint pairs to be from the same person, 
i.e., better discriminative ability. Specifically, a value of 1 indicates 
that our representations can perfectly discriminate between same- 
person and different- person fingerprint pairs, a value of 0.5 indicates 
that our representations show no difference between same- person 
and different- person fingerprint pairs, and a value of 0 indicates that 
our representations are completely incorrect (i.e., different- person 
pairs are always labeled to be from the same person, and vice versa). 
It is calculated as follows: First, we calculate the finger- to- finger rep-
resentation vector distance for each selected pair of fingerprints in 
the testing set (keeping in mind that each pair either contains two 
fingerprints from the same person or two fingerprints from different 
people). Then, for every possible classification threshold on the pair-
wise distance (where a value below the threshold indicates that the 
fingerprints are both from the same person, and a value above the 
threshold indicates that the fingerprints are from different people), 
we calculate (x, y) = (FPR, TPR) =

(

FP

FP+TN
,

TP

TP+FN

)

 . (TPR stands 
for true positive rate, which is the percentage of same- person finger-
print pairs correctly identified as such; FPR stands for false positive 
rate, which is the percentage of different- person fingerprint pairs that 
are incorrectly identified as coming from the same person.) To get 
the final ROC AUC value, we take the area under the (FPR, TPR) curve.

Thus, it makes sense why higher ROC AUC values are better: 
They mean that we are able to achieve higher rates of true matches 
than false matches. Moreover, the advantage of ROC AUC is that 
it is threshold- independent, as opposed to metrics like accuracy, 
which depend on a predetermined threshold. This is especially im-
portant in fingerprint recognition, where different tasks require 
different thresholds, e.g., when generating leads for investiga-
tions, we would favor a threshold that maximizes TPR, but when 
providing evidence in a court of law, we would favor a threshold 
that minimizes FPR.

Pinpointing the crucial areas with saliency maps
To generate the saliency maps in Fig. 4, we need to give GradCAM 
a differentiable scoring function, in which higher values indicate 
more confidence in the prediction. [GradCAM uses the gradients 
of the scoring function with respect to the convolutional feature 
maps to pinpoint the most important regions of the image (46).] A 
natural candidate for the scoring function is the triplet loss (30) 
since it is what we use to optimize our model.

We set α = 0, resulting in S(r, fA, fB) = max {d(r, fA) − d(r, fB),0}, 
where r is the reference fingerprint embedding, fA and fB are em-
beddings for two query fingerprints, and d is squared Euclidean 
distance. When S is positive, B is more similar to the reference than 
A (since B’s embedding has a lower distance), i.e., B is predicted to 
be from the same person as the reference fingerprint. Likewise, 
when S is 0, A is predicted to be from the same person as the refer-
ence fingerprint (since A’s embedding now has a lower distance).

For the saliency maps between two fingerprints from the same 
person (e.g., “intra- person similarity” between person 00001491’s 
right ring and left middle from Fig. 4A), we use S(r, fdiff, fsame). 
For the saliency maps between two fingerprints from different 
people (e.g., “inter- person similarity” between person 00002369’s 
right thumb and person 00002472’s right little in Fig. 4F), we use 
S(r, fsame, fdiff). We swap the order of fsame and fdiff to ensure that 
positive S values correspond to higher saliency.

We use the features generated by the final ResNet- 18 block to 
calculate the saliency map, as is standard practice (46, 47). To 
reduce noise in the saliency maps, we use the data augmentations 
and eigen- smoothing recommended by Gildenblat et al. (47).

Lead efficiency analysis
We perform a statistical analysis to evaluate our model for lead 
generation in a hypothetical forensic investigation. We modify 
the test dataset by changing the proportion of positive samples 
(matching pairs), i.e., the prior. From the model predictions, we 
calculate the probability (as defined by a geometric distribution) 
of a true positive, given that the test result is positive. This value 
is calculated assuming a theoretically infinite dataset (suspect 
pool) so that the results are invariant to the size of our specific 
dataset (2260 samples). At low priors (e.g., 0.1% positive sam-
ples), the total number of positive samples becomes negligible, 
so we pass through the dataset again, generating more pairs each 
time. However, there is a trade- off between the number of 
samples and the computation time of the experiment. Thus, 
we select the number of passes such that the total number of 
positive samples remains at 1130 (half the dataset) or the num-
ber of passes reaches 20. We cap the number of passes at 20 but 
would like to increase it further, given more time and computing 
in future work.

A graph of the number of leads generated by our method, as 
compared to an exhaustive search baseline, is provided in Fig. 1D. An 
alternative representation of these data (as percent reduction in 
leads compared to an exhaustive search baseline) is provided in 
fig. S8B. We see that our method is beneficial at low priors where 
an exhaustive search is difficult.

Experiment- specific modifications
Finger- by- finger similarities
In this experiment, we wanted to give our twin neural networks fair 
chances to learn the similarities for every finger type (e.g., right 
thumb and left index). Thus, we take a subset of the SD302 dataset 
with equal numbers of all finger types: 22,660 samples from 160 
people in training, 2290 samples from 20 people in validation, and 
2260 samples from 20 people in testing. We also use samples from 
SD300 with roughly equal (within ±20) numbers of all finger types: 
14,118 samples from 710 people in training, 1754 samples from 88 
people in validation, and 1787 samples from 90 people in testing. 
We exclude RidgeBase because it does not contain any thumbs. We 
also use a balanced subset (i.e., has equal numbers of all finger types) 
of SD301 in testing (again, excluding the overlapping participant 
from SD302), with 2490 samples—this acts as an unbiased holdout. 
In addition, we do not pre- train on PrintsGAN—while it does not 
adversely affect the performance of our model, it does bias our sci-
entific analysis of which fingers are most similar by giving the model 
a large number of samples for same- finger matching (which is al-
ready a solved problem).
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In addition, as noted earlier, we use Welch’s two- sample t test 
(45) rather than the paired t test (36) since partitioning the pairs by 
finger type (e.g., considering only pairs of right thumbs and left 
middle fingers) means that each same- person fingerprint pair may 
no longer be in the same group as its corresponding different- person 
fingerprint pair.
Feature similarities
In this experiment, we train, validate, and test the various feature ex-
traction maps of SD302. We use only SD302 because it is widely re-
garded as the gold standard publicly available 10- finger dataset (9, 42), 
and extracting and running deep learning on the feature maps for all 
the other datasets would be too computationally expensive given our 
limited resources. Again, we do not pre- train on PrintsGAN because 
we did not have the computational resources to extract feature maps 
for all 525,000 images, and to pre- train on the original PrintsGAN 
images would bias our model to prefer feature maps that more closely 
resemble full fingerprints, which is contrary to this experiment’s pur-
pose of finding the most similar features.

We base our fingerprint binarization, orientation, and ridge den-
sity extraction methods on the algorithms described by Hong et al. 
(58), Rathore et al. (59), and open- source code (60, 61). For minutiae 
extraction, we use NIST’s NBIS software, specifically MINDTCT (44).

The binarized, orientation, and ridge density maps each have 28,270 
training samples from 160 people, 2803 validation samples from 20 
people, and 2743 testing samples from 20 people. The minutiae density 
maps have 28,285 training samples from 160 people, 2805 validation 
samples from 20 people, and 2745 testing samples from 20 people. The 
regular SD302 dataset has 28,285 training samples from 160 people, 
2805 validation samples from 20 people, and 2746 testing samples from 
20 people. This discrepancy in the number of images is because some of 
the images were too low- quality to extract reliable feature maps from, 
but those images make up a negligible portion of the dataset.
Lead efficiency
We test on the balanced SD302 dataset for two reasons: (i) SD302 uses 
a wide variety of sampling modalities, as would be present in a criminal 
investigation, and (ii) we need to use sets of multiple fingers from the 
same person in lead generation, and the balanced dataset makes it com-
putationally easier to select sets of fingerprints from distinct fingers of 
the same person. SD302 was the only dataset tested in this experiment.
Demographics
For the demographic generalizability experiment, we increased the 
early stopping interval from 85 to 105. This is because since there are 
fewer training samples in these experiments, the model takes more 
epochs to start converging, so we do not want to stop it too early.

Supplementary Materials
This PDF file includes:
Sections S1 to S7
Figs. S1 to S10
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